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Abstract— An intelligent reflecting surface (IRS) is invoked for
enhancing the energy harvesting performance of a simultaneous
wireless information and power transfer (SWIPT) aided system.
Specifically, an IRS-assisted SWIPT system is considered, where
a multi-antenna aided base station (BS) communicates with
several multi-antenna assisted information receivers (IRs), while
guaranteeing the energy harvesting requirement of the energy
receivers (ERs). To maximize the weighted sum rate (WSR)
of IRs, the transmit precoding (TPC) matrices of the BS and
passive phase shift matrix of the IRS should be jointly optimized.
To tackle this challenging optimization problem, we first adopt
the classic block coordinate descent (BCD) algorithm for decou-
pling the original optimization problem into several subproblems
and alternately optimize the TPC matrices and the phase shift
matrix. For each subproblem, we provide a low-complexity
iterative algorithm, which is guaranteed to converge to the
Karush-Kuhn-Tucker (KKT) point of each subproblem. The BCD
algorithm is rigorously proved to converge to the KKT point
of the original problem. We also conceive a feasibility checking
method to study its feasibility. Our extensive simulation results
confirm that employing IRSs in SWIPT beneficially enhances the
system performance and the proposed BCD algorithm converges
rapidly, which is appealing for practical applications.

Index Terms— Intelligent reflecting surface (IRS), large
intelligent surface (LIS), SWIPT, energy harvesting, MIMO.
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I. INTRODUCTION

RECENTLY, intelligent reflecting surface (IRS)-assisted
wireless communication has received considerable

research attention, since it is capable of supporting cost-
effective and energy-efficient high data rate communication
for next-generation communication systems [1]–[3]. In simple
tangible terms, an IRS is composed of a vast number of
low-cost and passive reflective components, each of which
is capable of imposing a phase change on the signals inci-
dent upon them. Thanks to the recent advances in meta-
materials [4], it has become feasible to reconfigure the phase
shifts in real time. As a result, the phase shifts of all reflective
components can be collaboratively adjusted for ensuring that
the signals reflected from the IRS can be added constructively
or destructively at the receiver in order to beneficially steer
the signal component arriving from the base station (BS) for
enhancing the desired signal power or alternatively for sup-
pressing the undesired signals, such as interference. In contrast
to conventional physical layer techniques that are designed
for accommodating the hostile time-varying wireless chan-
nels [5], [6], IRSs constitute a new paradigm capable of
‘reprogramming’ the wireless propagation environment into
a more favorable transmission medium. Since the reflective
components are passive, they impose a much lower power
consumption than conventional relay-aided communication
systems relying on active transmission devices. Additionally,
no thermal noise is imposed by the IRS, since it directly
reflects the incident signals without decoding or amplifying
them, which is in contrast to conventional relays. Furthermore,
the reflective phase arrays can be fabricated in small size and
low weight, which enables them to be easily coated in the
buildings’ facade, ceilings, walls, etc. Furthermore, as IRS
is a complementary device, it can be readily integrated into
current wireless networks without modifying the physical layer
standardization, making it transparent to the users. To fully
exploit the benefits of IRS, the active beamforming at the
BS and the passive beamforming at the IRS should be jointly
designed. However, the optimization variables are coupled and
the joint design leads to a complex optimization problem that
is difficult to solve.

Some innovative efforts have been devoted to the trans-
ceiver design when integrating IRS into various wireless
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communication systems, including the single-user scenarios
of [7]–[11], the downlink multiple-user scenarios of [12]–[15],
the physical layer security design of [16]–[21], the mobile
edge computing (MEC) networks of [22], multigroup multicast
networks of [23] and the multicell multiuser multiple-input
multiple-output (MIMO) case in [24]. Concretely, Wu et al.
proposed joint active and passive beamforming for a single-
user scenario in [7], where semidefinite relaxation (SDR) was
proposed for optimizing the phase shift matrix. However, its
complexity is high since the number of optimization vari-
ables increases quadratically with the number of phase shifts.
Additionally, the Gaussian random approximation employed
leads to certain performance loss. To resolve this issue,
Yu et al. [8] proposed a pair of efficient algorithms termed
as fixed point iteration and manifold optimization techniques,
which can guarantee locally optimal solutions. As a further
advance, the authors of [9] considered realistic frequency-
selective channels. The phase shift design was studied in [10]
when only statistical channel state information (CSI) is avail-
able. A sophisticated phase shift model was derived in [11],
by taking into account a realistic amplitude-phase relationship.
For the multiuser case, the authors in [12] considered the
total transmit power minimization problem, while guarantee-
ing the users’ signal-to-interference-plus-noise ratio (SINR)
constraints. The associated energy efficiency maximization
problem was studied in [13] and zero-forcing beamforming
was adopted by the BS for simplifying the optimization prob-
lem. By contrast, a weighted sum rate (WSR) maximization
problem was considered in [14] and the fairness issues were
studied in [15]. The authors of [16]–[18] studied the security
issues of a single-user case, while the authors of [19]–[21]
considered multiple-user scenarios. In [22], the IRS was shown
to be beneficial in reducing the latency of MEC networks.
In addition, the IRS can help enhance the WSR performance
for the multigroup multicast network in [23]. Most recently,
we considered an IRS-assisted multicell MIMO communica-
tions scenario [24], where we demonstrated that deploying an
IRS at the cell edge is also capable of mitigating the adjacent-
cell interference. Channel state information (CSI) is challeng-
ing to obtain in IRS-assisted communication system due to its
passive feature. There are some initial efforts to handle this
issue such as channel estimation and/or robust transmission
design [25]–[28]. Specifically, Huang et al. [25] proposed
a deep learning method for efficient online configuration of
the phase shifts, where the phase values can be immediately
obtained by inputting the user location into the trained deep
neural network. A two-stage channel estimation method based
on a sparse matrix factorization and a matrix completion was
proposed in [26]. A pair of algorithms based on compressed
sensing and deep learning were conceived by Taha et al. [27]
for tackling the challenging channel estimation issues of IRS-
assisted systems. Most recently, we first studied the robust
beamforming design for IRS-assisted communication systems
in [28], where the imperfect channel from an IRS to users was
considered and the channel estimation error was assumed to
be within a bounded elliptical region.

On the other hand, information transmission enabled simul-
taneous wireless information and power transfer (SWIPT) is

Fig. 1. An IRS-assisted SWIPT system.

an appealing technique for future energy-hungry Internet-of-
Things (IoTs) networks. Specifically, a base station (BS) with
constant power supply will transmit wireless signals to a set of
devices. Some devices intend to decode the information from
the received signal, which are termed as information receivers
(IRs), while the others will harvest the signal energy, which
are called energy receiver (ER). In [29], Zhang et al. studied
the trade-off between the information rate attained and the
amount of harvested energy for a single-user MIMO system.
In practice, a typical ER such as a humidity sensor requires
much higher energy for its operation than that required by
IRs. Due to severe channel attenuation, the power received by
the ERs is weak, which limits the maximum link-distance of
ERs. To mitigate this issue, we propose to deploy an IRS in
the vicinity of ERs to provide additional transmission links
to support the ERs for enhancing their harvested power as
shown in Fig. 1, since there is a paucity of IRS-assisted
SWIPT contributions in the literature [30]. Explicitly in [30],
the weighted sum power maximization problem was studied by
Wu and Zhang, who proved that no dedicated energy-carrying
signals were required for an IRS-aided SWIPT system. The
SDR method was adopted for solving the optimization prob-
lem, which exhibits a high computational complexity as well
as imposing a performance degradation due to the associated
rank-one extraction. However, this method is not applicable
when each user is equipped with multiple antennas. Hence,
in this paper we formulate a weighted sum rate (WSR)
maximization problem for the IRS-assisted SWIPT MIMO
system of Fig. 1, in which an IRS is installed in the vicinity
of ERs for compensating the associated power loss, while
maximizing the WSR of distant IRs with the aid of passive
beamforming.

Against this background, the main contributions of this
paper are summarized as follows:

1) We formulate the WSR maximization problem by jointly
optimizing the transmit precoding (TPC) matrices of
the BS and those of the passive beamforming at the
IRS for our IRS-assisted SWIPT MIMO system subject
to a non-convex unit-modulus constraint imposed on
the phase shifts, while simultaneously satisfying the
energy harvesting requirement of the ERs. To the best
of our knowledge, this is the first treatise considering
the WSR maximization problem of IRS-assisted SWIPT
MIMO systems, which is much more challenging than



PAN et al.: IRS AIDED MIMO BROADCASTING FOR SWIPT 1721

the weighted sum power minimization problem of [30]
since the latter can be readily transformed into a convex
optimization problem. In contrast to the multicell system
of [24], an additional energy harvesting constraint is also
imposed in our current study, which further complicates
the analysis. Specifically, this constraint is non-convex
and the optimization problem may become infeasible.
The WSR maximization problem is challenging to solve,
since the optimization variables are highly coupled and
the data rate expressions of the IRs are complex. To deal
with this issue, we first reformulate the original problem
into an equivalent form by exploiting the equivalence
between the data rate and the weighted minimum mean-
square error (WMMSE). Then, an alternating optimiza-
tion algorithm based on the popular block coordinate
descent (BCD) algorithm is proposed for alternately
updating the active TPC matrices of the BS and the
phase shift matrix of the IRS, which is rigorously proved
to converge to the Karush-Kuhn-Tucker (KKT) point of
the original optimization problem.

2) For a given phase shift matrix, we then proceed by
developing an iterative algorithm based on the suc-
cessive convex approximation (SCA) method and on
the Lagrangian dual decomposition method to derive
a nearly closed-form solution for the TPC matrices.
A low-complexity bisection search method is proposed
for finding the optimal dual variables. The solutions
generated by our iterative algorithm are guaranteed to
converge to the KKT point of the TPC optimization
problem.

3) For the given TPC matrices, we formulate the phase shift
optimization problem as a non-convex quadratically con-
strained quadratic program QCQP) subject to an addi-
tional energy harvesting constraint by invoking some
further matrix manipulations. Then, a novel iterative
algorithm based on the majorization-minimization (MM)
algorithm [31] and on the price-based method [32] is
developed for solving the QCQP. We strictly prove that
the final solution generated by the iterative algorithm is
guaranteed to converge to the KKT point of the phase
shift optimization problem.

4) The associated feasibility issue is also studied by for-
mulating an alternative optimization problem and an
iterative algorithm is proposed for solving this problem.

5) Extensive simulation results are provided for verifying
the performance advantages of employing IRS in SWIPT
in order to enhance the energy harvesting performance.
It is shown that the operating range of the ERs can
be dramatically expanded by placing IRSs in the ERs’
vicinity. Furthermore, the BCD algorithm converges
rapidly, and it is eminently suitable for practical applica-
tions. Our simulation results also show that as expected,
the path loss exponent substantially affects the system’s
performance and thus the location of the IRS should be
carefully chosen.

The remainder of this paper is organized as follows.
In Section II, we introduce the IRS-assisted SWIPT system
model and our problem formulation. The detailed algorithms

used for solving the optimization problem are presented in
Section III. The feasibility issues of the original problem are
discussed in Section IV, followed by our extensive simulations
and discussions in Section V. Finally, our conclusions are
provided in Section VI.

Notations: For matrix A, A∗ and A� represent the con-
jugate operator and converged solution, respectively. Re{a}
represents the real part of a complex value a. C

M denotes the
set of M × 1 complex vectors. E{·} denotes the expectation
operation. For two matrices A and B, A � B represents
Hadamard product of A and B. ‖A‖F , tr (A) and |A| denote
the Frobenius norm, trace operation and determinant of A,
respectively. ∇fx (x) denotes the gradient of the function f
with respect to (w.r.t.) the vector x. CN (0, I) represents a
random vector following the distribution of zero mean and unit
variance matrix. arg{·} means the extraction of phase infor-
mation. diag(·) denotes the diagonalization operation. (·)∗,
(·)T and (·)H denote the conjugate, transpose and Hermitian
operators, respectively. arg(·) means the phase extraction
operation.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

Consider the IRS-aided multiuser MIMO downlink of a
SWIPT system operating over the same frequency band both
for data and energy transmission, as shown in Fig. 1. Let us
assume that there are KI IRs and KE ERs, respectively. It is
also assumed that the BS is equipped with NB ≥ 1 antennas,
while each IR and ER is equipped with NI ≥ 1 and NE ≥ 1
antennas, respectively. Let us denote the sets of IRs and ERs
as KI and KE , respectively. In general, low-power sensors
require a certain amount of power (e.g., 0.1 mW) for their
real-time operation. Due to the associated severe channel atten-
uation, the sensors should be deployed sufficiently close to the
BS, which limits their practical implementation. To resolve this
issue, we propose to employ an IRS, which has M reflective
elements in the ERs’ vicinity for extending the operational
range of sensors, as shown in Fig. 1. Firstly, the IRS increases
the energy harvested by the ERs, and additionally it also assists
in enhancing the signal strength for distant IRs through careful
phase shift optimization.

The number of data streams destined for each IR is assumed
to be d, satisfying 1 ≤ d ≤ min{NB, NI}. The signal
transmitted from the BS is given by

x =
KI∑
k=1

Fksk, (1)

where sk ∈ Cd×1 is the (d × 1)-element data symbol vector
designated for the kth IR satisfying E

[
sksH

k

]
= Id and

E
[
sisH

j

]
= 0, for i �= j, while Fk ∈ C

NB×d is the linear
TPC matrix used by the BS for the kth IR. Assuming non-
dispersive narrow-band transmission, the baseband equivalent
channels spanning from the BS to the IRS, from the BS
to the kth IR, from the BS to the lth ER, from the IRS
to the kth IR, and finally from the IRS to the lth ER are
modelled by the matrices Z ∈ CM×NB , Hb,k ∈ CNI×NB ,
Gb,l ∈ CNE×NB , Hr,k ∈ CNI×M , and Gr,l ∈ CNE×M ,
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respectively. Let us denote the diagonal reflection-coefficient
matrix at the IRS by Φ = diag

{
ejθ1 , · · · , ejθm , · · · , ejθM

}
,1

where θm ∈ [0, 2π] is the phase shift of the m-th reflective
element. Due to absorption and diffraction, the signal power
that has been reflected multiple times is ignored. As a result,
the signal received at the kth IR is given by

yI,k = (Hb,k + Hr,kΦZ)x + nI,k, (2)

where nI,k is the kth IR’s noise vector satisfying
CN (0, σ2

IINI

)
. Similarly, the signal received at the lth ER

is given by

yE,l = (Gb,l + Gr,lΦZ)x + nE,l, (3)

where nE,l is the lth ER’s noise vector obeying the distribution
of CN (0, σ2

EINE

)
.

We assume that all the CSIs are perfectly known at the BS,
and the BS is responsible for calculating the phase shifts of
the IRS, which are then fed back by them to the IRS controller
through dedicated feedback channels. Given this idealized
and simplified assumption, the results obtained represent a
performance upper bound of how much performance gain can
be achieved by an IRS. Let us define the equivalent channel
spanning from the BS to the kth IR by H̄k

Δ= Hb,k + Hr,kΦZ.
Upon substituting x into (2), yI,k can be rewritten as

yI,k = H̄kFksk +
KI∑

i=1,i�=k

H̄kFisi + nI,k. (4)

Then, the achievable data rate (nat/s/Hz) of the kth IR is given
by [33]

Rk (F,Φ) = log
∣∣I + H̄kFkFH

k H̄H
k J−1

k

∣∣ , (5)

where F denotes the collection of TPC matrices, while
Jk is the interference-plus-noise covariance matrix given by
Jk =

∑KI

m=1,m �=k H̄kFmFH
mH̄H

k + σ2
I I.

On the other hand, due to the broadcast nature of wireless
channels, the ERs can extract energy from the electromagnetic
wave. In general, the harvested power is nonlinear over the
received radio frequency (RF) power due to the nonlinear RF-
to-DC conversion, which depends on the input RF power level.
This nonlinear EH model has been characterized in [34], which
is a complex function of the RF power. Based on this nonlinear
EH model, various transmission designs have been proposed
in [35] and [36]. However, there is still lack of a general model
that can accurately characterize this nonlinear relationship by
capturing all practical factors. Hence, for simplicity, we adopt
the simple linear EH model as widely used in the existing
literature [29], [37], [38]. By ignoring the noise power at the
ERs, the total harvested power is proportional to the total
received power. Let us define the equivalent channel spanning
from the BS to the lth ER by Ḡl

Δ= Gb,l + Gr,lΦZ. Then,
the total power harvested by the lth ER is

Qi = ηtr

(
KI∑
k=1

ḠlFkFH
k ḠH

l

)
, (6)

1j is the imaginary unit.

where 0 < η ≤ 1 is the energy harvesting efficiency. In this
paper, we consider the constraint that the weighted sum of the
power harvested by all ERs should be higher than a predefined
value, which is

Q =
KE∑
l=1

αlQl = tr

(
KI∑
k=1

FH
k GFk

)
≥ Q̄, (7)

where G =
∑KE

l=1 αlηḠH
l Ḡl, αl is the energy weighting

factor of the lth ER, with a higher value of αl representing a
higher priority for the lth ER than for others. Finally, Q̄ is the
minimum harvested power threshold.

B. Problem Formulation

Upon introducing the notations of φm = ejθm , ∀m, we have
Φ = diag {φ1, · · · , φM}. Again, we aim for jointly optimizing
the TPC matrices F and phase shift matrix Φ with the goal of
maximizing the WSR of all IRs subject to the total power
budget, to the unit modulus of the phase shifters and to
the harvested power requirement. Then, this problem can be
formulated as follows:

max
F,Φ

KI∑
k=1

ωkRk (F,Φ) (8a)

s.t.
KI∑
k=1

‖Fk‖2F ≤ PT , (8b)

tr
(

KI∑
k=1

FH
k GFk

)
≥ Q̄, (8c)

|φm| = 1, m = 1, · · · , M, (8d)

where ωk is the weighting factor controlling the scheduling
priority for each IR and PT is the power limit at the BS,
while (8d) is the unit-norm constraint imposed on the phase
shifters.

As the IRS is passive and both the ERs and IRs are
energy constrained, we assume that this optimization problem
is solved at the BS which posses the knowledge of the
CSI of all related links and other related parameters such
as Q̄. After computing the phase shift values for the IRS,
they are sent to the IRS controller through dedicated control
channels. Problem (8) is difficult to solve, since the TPC
matrices and the phase shifts are coupled. If we remove
the energy harvesting (EH) constraint, the problem reduces
to the WSR maximization problem recently studied in [24].
However, the additional EH constraint makes the optimization
more challenging to solve and the algorithms developed in [24]
cannot be directly applied for two reasons. Firstly, the EH
constraint is non-convex. Secondly, this problem may be
infeasible due to the conflicting constraints (8b) and (8c).
In the following, we first conceive a low-complexity algorithm
to solve this problem by assuming that it is feasible. Then,
we study the feasibility of this problem.

III. LOW-COMPLEXITY ALGORITHM DEVELOPMENT

In this section, we first transform Problem (8) into a more
tractable one, which allows the decoupling of the TPC matrices
and of the phase shifts. Then, the classic block coordinate
descent (BCD) algorithm [33] is proposed for solving the
transformed problem.
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A. Reformulation of the Original Problem

To deal with the complex objective function, we refor-
mulate Problem (8) by employing the well-known WMMSE
method [39]. The appealing feature of this method is that it
can transform the original complex problem into an equivalent
form, which facilitates the application of the BCD method.

Specifically, the linear decoding matrix U is applied to
estimate the signal vector ŝk for each IR

ŝk = UH
k yI,k, ∀k, (9)

where Uk ∈ CNI×d is the decoding matrix of the kth IR.
Then, the MSE matrix of the kth IR is given by

Ek= Es,n

[
(ŝk − sk) (ŝk − sk)H

]
=
(
UH

k H̄kFk − I
)(
UH

k H̄kFk−I
)H

+
KI∑

m=1,m �=k

UH
k H̄kFmFH

mH̄H
k Uk+σ2UH

k Uk, ∀k ∈ KI , (10)

where s and n denote the collections of data symbols and
noise vectors of all IRs, respectively.

By introducing a set of auxiliary matrices W = {Wk 
 0,
∀k ∈ KI} and defining U = {Uk, ∀k ∈ KI}, Problem (8)
can be reformulated as follows [33], [39]:

max
W,U,F,Φ

KI∑
k=1

ωkhk (W,U,F,Φ) (11a)

s.t. (8b), (8c), (8d), (11b)

where hk (W,U,F,Φ) is given by

hk (W,U,F,Φ) = log |Wk| − Tr (WkEk) + d. (12)

Although Problem (11) has more optimization variables than
Problem (8), the objective function (OF) in Problem (11) is
much easier to handle, which allows the BCD algorithm to
solve this problem by iteratively obtaining one set of variables
while keeping the others fixed. Note that the decoding matrices
U and the auxiliary matrices W only appear in the function
hk (W,U,F,Φ). Hence, the optimal solution of U and W
can be obtained while keeping the other matrices fixed. Specif-
ically, given Φ, W, and F, setting the first-order derivative of
hk (W,U,F,Φ) with respect to Uk and Wk to zero, we can
obtain the optimal solution of Uk and Wk respectively as
follows

U�
k =
(
Jk + H̄kFkFH

k H̄H
k

)−1
H̄kFk,W�

k = E�−1
k , (13)

where E�
k is obtained by inserting U�

k into the kth IR’s MSE
matrix in (10), yielding

E�
k = Id − FH

k H̄H
k

(
KI∑

m=1

H̄kFmFH
mH̄H

k + σ2
I I

)−1

H̄kFk.

(14)

In the following, we focus our attention on the optimization
of TPC matrices F and phase shifts Φ, when U and W are
given.

B. Optimizing the Precoding Matrices F

In this subsection, we aim to optimize the TPC matrices F
with fixed W,U and Φ. By inserting Ek in (10) into the OF
of (11) and discarding the constant terms, the TPC matrices
of our optimization problem can be transformed as follows

min
F

KI∑
k=1

tr
(
FH

k AFk

)− KI∑
k=1

ωkTr
(
WkUH

k H̄kFk

)

−
KI∑
k=1

ωktr
(
WkFH

k H̄H
k Uk

)
(15a)

s.t. (8b), (8c), (15b)

where A =
∑KI

m=1 ωmH̄H
mUmWmUH

mH̄m.
However, due to the non-convexity of the EH constraint,

Problem (15) is still non-convex. To resolve this issue,
we observe that it can be viewed as a difference of convex
(d.c.) program, which can be efficiently solved by the succes-
sive convex approximation (SCA) method [40]. In particular,
we can approximate it by its first-order Taylor expansion.
By applying [41, Appendix B] and Jensen’ inequality, we have

tr

(
KI∑
k=1

FH
k GFk

)
≥−tr

(
KI∑
k=1

F(n)H
k GF(n)

k

)

+2Re

[
tr

(
KI∑
k=1

F(n)H
k GFk

)]
, (16)

where
{
F(n)

k , ∀k
}

is the solution obtained from the previous
iteration. Then, upon replacing the constraint (8c) by the
following constraint:

2Re

[
tr

(
KI∑
k=1

F(n)H
k GFk

)]
≥ Q̃, (17)

where Q̃ = Q̄ + tr
(∑KI

k=1 F(n)H
k GF(n)

k

)
, we may consider

the following optimization problem:

min
F

KI∑
k=1

tr
(
FH

k AFk

)− KI∑
k=1

ωktr
(
WkUH

k H̄kFk

)

−
KI∑
k=1

ωktr
(
WkFH

k H̄H
k Uk

)
(18a)

s.t. (8b), (17). (18b)

Since the OF is convex w.r.t. F, and the constraints (8b)
and (17) are convex, Problem (18) constitutes a convex opti-
mization problem, which can be solved by standard convex
solver packages, such as CVX [42]. However, the resultant
computational complexity is high. In the following, we provide
a low-complexity algorithm for obtaining a nearly optimal
closed-form solution by resorting to the Lagrangian dual
decomposition method [43]. Since Problem (18) is a convex
problem and satisfies the slater’s condition,2, the dual gap is

2According to line 1 in Algorithm 2 the initial precoding matrix is initialized
by the solution obtained from Section IV. Assume the original problem
is feasible. Due to the randomness of channel matrices of G and H,
the precoding matrix obtained in Section IV must be strictly larger than the
minimum EH requirement, i.e., tr

��KI
k=1 F

(0)H
k GF

(0)
k

�
> Q̄. Then, based

on [29], there must exist a strictly feasible solution, and thus the slater’s
condition holds.
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zero and the optimal solution can be obtained by solving its
dual problem instead of its original one. We first introduce the
Lagrange multiplier λ associated with the power constraint,
and derive the partial Lagrangian function of Problem (18) as
follows

L (F, λ) =
KI∑
k=1

tr
(
FH

k AFk

)− KI∑
k=1

ωktr
(
WkUH

k H̄kFk

)

−
KI∑
k=1

ωktr
(
WkFH

k H̄H
k Uk

)

+λ

KI∑
k=1

tr
(
FH

k Fk

)− λPT . (19)

The dual function can be obtained by solving the following
problem

g (λ) Δ= min
F
L(F, λ) s.t. (17). (20)

Then, the dual problem is given by

max
λ

g (λ) (21a)

s.t. λ ≥ 0. (21b)

Before solving the dual problem (21), we have to derive the
expression of the dual function g (λ) by solving Problem (20)
for a given λ. By introducing the dual variable μ ≥ 0
associated with the constraint (17), the Lagrangian function
for Problem (20) is given by

L (F, μ)=
KI∑
k=1

tr
(
FH

k (A+λI)Fk

)− KI∑
k=1

ωktr
(
WkUH

k H̄kFk

)

−
KI∑
k=1

ωktr
(
WkFH

k H̄H
k Uk

)
+ μQ̃

−2μRe

[
tr

(
KI∑
k=1

F(n)H
k GFk

)]
− λPT . (22)

By setting the first-order derivative of L (F, μ) w.r.t. F∗
k to the

zero matrix, we obtain the optimal solution of Fk as follows:

F�
k(μ) = (A + λI)†

(
ωkH̄H

k UkWk + μGF(n)
k

)
, (23)

where (·)† denotes the matrix pseudoinverse. The value of
μ should be chosen for ensuring that the complementary
slackness condition for constraint (17) is satisfied:

μ

(
2Re

[
tr

(
KI∑
k=1

F(n)H
k GF�

k(μ)

)]
− Q̃

)
= 0. (24)

Hence, if the following condition holds

2Re

[
tr

(
KI∑
k=1

F(n)H
k GF�

k(0)

)]
≥ Q̃, (25)

the optimal solution of Problem (20) is given by F�
k(0),

∀k ∈ KI . Otherwise, the optimal μ is

μ=
Q̃−2Re

[
tr
(

KI∑
k=1

ωkF
(n)H
k G(A+λI)−1H̄H

k UkWk

)]

2tr
(

KI∑
k=1

F(n)H
k G(A+λI)−1GF(n)

k

) .

(26)

With the aid of the dual function, we may now commence
the solution of the dual problem (21) to find the optimal λ.
Given λ, we denote the optimal solution of Problem (20) by
Fk(λ). The value of λ should be chosen for ensuring that the
complementary slackness condition for the power constraint
is satisfied:

λ

(
tr

(
KI∑
k=1

FH
k (λ)Fk (λ)

)
− PT

)
= 0. (27)

If the following condition holds:

tr

(
KI∑
k=1

FH
k (0)Fk (0)

)
≤ PT , (28)

then the optimal solution is given by Fk(0). Otherwise,
we have to find λ for ensuring that the following equation
holds:

P (λ) Δ= tr

(
KI∑
k=1

FH
k (λ)Fk (λ)

)
= PT . (29)

Unfortunately, due to the complex expression of μ in (26),
we are unable to prove its monotonic nature by using the
explicit expression of P (λ) as in [24]. In the following lemma,
we prove that P (λ) is a monotonically decreasing function of
λ, which enables the bisection search method to find λ.

Lemma 1: The total power P (λ) is a monotonically decreas-
ing function of λ.

Proof: Please refer to Appendix A. �
Based on Lemma 1, the bisection search method can be

used for finding the solution of equation (29). In Algorithm 1,
we provide the detailed steps of solving Problem (18) for the
case of λ > 0. In each iteration of Algorithm 1, we have
to calculate F�

k(μ) in (23), which involves the calculation
of (A + λI)−1 at a complexity order of O(N3

B). If the total
number of iterations is T , then the total complexity of calculat-
ing (A + λI)−1 is O(TN3

B), which may be excessive. Here,
we provide a method for reducing the computational com-
plexity. Specifically, as A is a non-negative definite matrix,
it can be decomposed as A = QΛQH by using the singular
value decomposition (SVD), where QQH = QHQ = INT and
Λ is a diagonal matrix with non-negative diagonal elements.
Then, we have (A + λI)−1 = Q (λI + Λ)−1 QH. Hence,
in each iteration, we only have to calculate the product of two
matrices, which has much lower complexity than calculating
the inverse of the matrix having the same dimension.

Based on the above discussions, in Algorithm 2 we provide
the detailed steps of the SCA algorithm conceived for solving
Problem (15).

In the following, we show that Algorithm 2 converges to
the KKT point of Problem (15).
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Algorithm 1 Bisection Search Method to Solve Problem (18)
1: Initialize the accuracy ε, the bounds λl and λu;
2: Calculate λ = (λl + λu)/2;
3: If condition (25) is satisfied, μ is equal to zero. Otherwise,

update μ in (26);
4: Calculate {Fk(λ), ∀k} according to (23);
5: If P (λ) ≥ PT , set λl = λ. Otherwise, set λu = λ;
6: If |λl − λu| ≤ ε, terminate. Otherwise, go to step 2.

Algorithm 2 SCA Algorithm to Solve Problem (15)

1: Initialize the accuracy ε, the precoding matrices F(0) from
Section 2, the iteration index n = 0, the maximum number
of iterations nmax, calculate the OF value of Problem (15)
as z(F(0));

2: Calculate Q̃(n) = Q̄ + tr
(∑KI

k=1 F(n)H
k GF(n)

k

)
;

3: With Q̃(n), calculate {F(n+1)
k , ∀k} by solving Problem (18)

using Algorithm 1;
4: If n ≥ nmax or

∣∣z(F(n+1))− z(F(n))
∣∣/∣∣z(F(n+1))

∣∣ < ε,
terminate. Otherwise, set n← n + 1 and go to step 2.

Theorem 1: The sequences of {F(n), n = 1, 2, · · · } gener-
ated by Algorithm 2 converge to the KKT optimum point of
Problem (15).

Proof: The proof is similar to that of [44] and hence it is
omitted for simplicity. �

Next, we briefly analyze the complexity of Algorithm 2.
We assume that NB ≥ NI ≥ d. In each iteration
of Algorithm 2, the main complexity contribution is the
calculation of {F(n+1)

k , ∀k} by using the bisection search
method in Algorithm 1. In each iteration of Algorithm 1,
the main complexity lies in calculating F in (23), which
is on the order of O(KIN

3
B). The number of itera-

tions required for Algorithm 1 to converge is given by
log2

(
λu−λl

ε

)
. Hence, the total complexity of Algorithm 1

is O(log2

(
λu−λl

ε

)
KIN

3
B). Then, the total complexity of

Algorithm 2 is given by O(nmaxlog2

(
λu−λl

ε

)
KIN

3
B).

C. Optimizing the Phase Shift Matrix Φ

In this subsection, we focus our attention on optimizing the
phase shift matrix Φ, while fixing the other parameters. Upon
substituting Ek in (10) into (12) and removing the terms that
are independent of Φ, the phase shift optimization problem is
formulated as:

min
Φ

KI∑
k=1

tr
(
ωkWkUH

k H̄kF̃H̄H
k Uk

)

−
KI∑
k=1

tr
(
ωkWkUH

k H̄kFk

)

−
KI∑
k=1

tr
(
ωkWkFH

k H̄H
k Uk

)
(30a)

s.t. (8c), (8d), (30b)

where F̃ =
∑KI

m=1 FmFH
m.

By substituting H̄k = Hb,k + Hr,kΦZ into (30a), we have

ωkWkUH
k H̄kF̃H̄H

k Uk

= ωkWkUH
k Hr,kΦZF̃ZHΦHHH

r,kUk

+ωkWkUH
k Hb,kF̃ZHΦHHH

r,kUk

+ωkWkUH
k Hr,kΦZF̃HH

b,kUk+ωkWkUH
k Hb,kF̃HH

b,kUk,

(31)

and

ωkWkUH
k H̄kFk

= ωkWkUH
k Hr,kΦZFk + ωkWkUH

k Hb,kFk. (32)

Let us define Bk
Δ= ωkHH

r,kUkWkUH
k Hr,k, C Δ= ZF̃ZH

and Dk
Δ= ωkZF̃HHH

b,kUkWkUH
k Hr,k. By using (31),

we arrive at:

tr
(
ωkWkUH

k H̄kF̃H̄H
k Uk

)
= tr

(
ΦHBkΦC

)
+ tr

(
ΦHDH

k

)
+ tr (ΦDk) + const1,

(33)

where const1 is a constant term that is independent of Φ.
Similarly, by defining Tk

Δ= ωkZFkWkUH
k Hr,k, from (32)

we have

tr
(
ωkWkUH

k H̄kFk

)
= tr (ΦTk) + const2, (34)

where const2 is a constant term that is independent of Φ.
By defining Gb

Δ=
∑KE

l=1 αlηGH
b,lGb,l, Gr

Δ=∑KE

l=1 αlηGH
r,lGr,l, and Gbr

Δ= ZF̃
∑KE

l=1 αlηGH
b,lGr,l,

the EH constraint in (8c) can be recast as follows:

tr
(
ΦHGrΦC

)
+ tr

(
ΦHGH

b,r

)
+ tr (ΦGbr)

+tr
(
GbF̃

)
≥ Q̄. (35)

By inserting (33) and (34) into the OF of Problem (30) and
removing the constant terms, we have

min
Φ

tr
(
ΦHBΦC

)
+ tr

(
ΦHVH

)
+ tr (ΦV) (36a)

s.t. (8d), (35), (36b)

where B and V are given by B =
∑KI

k=1 Bk and
V =

∑KI

k=1 Dk −
∑KI

k=1 Tk , respectively.
Upon denoting the collection of diagonal elements of Φ by

φ = [φ1, · · · , φM ]T and adopting the matrix identity of [45,
Eq. (1.10.6)], it follows that

tr
(
ΦHBΦC

)
= φH

(
B�CT

)
φ,

tr
(
ΦHGrΦC

)
= φH

(
Gr �CT

)
φ. (37)

Upon denoting the collections of diagonal elements of

V and Gbr by v =
[
[V]1,1, · · · , [V]M,M

]T
and

g =
[
[Gbr]1,1, · · · , [Gbr]M,M

]T
, we arrive at

tr (ΦV) = vTφ, tr
(
ΦHVH

)
= φHv∗,

tr (ΦGbr) = gTφ, tr
(
ΦHGH

br

)
= φHg∗. (38)

Moreover, the constraint (35) can be rewritten as

φHΥφ + 2Re
{
φHg∗} ≥ �

Q, (39)
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where we have
�

Q = Q̄−Tr
(
GbF̃

)
and Υ = Gr �CT. It can

be verified that Gr and CT are non-negative semidefinite
matrices. Then, according to [45], the Hadamard product
Gr �CT (or equivalently Υ) is also a semidefinite matrix.

Thus, Problem (36) can be transformed as

min
φ

φHΞφ + 2Re
{
φHv∗} (40a)

s.t. (8d), (39), (40b)

where we have Ξ = B�CT. Again, B can be verified to be a
non-negative semidefinite matrix, and thus Ξ is a non-negative
semidefinite matrix.

Due to the non-convex constraint (39), Problem (40) is
difficult to solve. To deal with this constraint, we again employ
the SCA method [40]. Specifically, since φHΥφ is convex
w.r.t. φ, its lower bound can be obtained as follows:

φHΥφ ≥ −φ(n)HΥφ(n) + 2Re
[
φHΥφ(n)

]
, (41)

where φ(n) is obtained in the previous iteration. Then, con-
straint (39) is replaced by the following constraint

2Re
[
φH
(
g∗+Υφ(n)

)]
≥ �

Q + φ(n)HΥφ(n) Δ= Q̂, (42)

which is a linear constraint. Then, Problem (40) then becomes

min
φ

φHΞφ + 2Re
{
φHv∗} (43a)

s.t. (8d), (42). (43b)

In the following, we conceive the Majorization-
Minimization (MM) algorithm [31] for solving Problem (43).
The key idea is to solve a challenging problem by introducing
a series of more tractable subproblems. Upon denoting the
objective function of Problem (43) by f(φ), in the (n + 1)th
iteration we have to find the upper bound of the OF, denoted
as g(φ|φ(n)), which should satisfy the following three
conditions:

1)g(φ(n)|φ(n))=f(φ(n));

2)∇φ∗g(φ|φ(n))
∣∣∣
φ=φ(n)

= ∇φ∗f(φ)|φ=φ(n) ;

3)g(φ|φ(n))≥f(φ). (44)

Then, we solve the approximate subproblem defined by a more
tractable new OF g(φ|φ(n)). To find g(φ|φ(n)), we introduce
the following lemma [46].

Lemma 2: For any given φ(n), the following inequality
holds for any feasible φ:

φHΞφ ≤ φHXφ−2Re
{

φH (XΞ)φ(n)
}

+
(
φ(n)

)H

(X−Ξ)φ(n) Δ= y(φ|φ(n)), (45)

where X = λmaxIM and λmax is the maximum eigenvalue
of Ξ. �

Then, the function g(φ|φ(n)) can be constructed as follows:

g(φ|φ(n)) = y(φ|φ(n)) + 2Re
{
φHv∗} , (46)

where y(φ|φ(n)) is defined in (45). The new OF g(φ|φ(n))
is more tractable than the original OF f(φ). The subproblem
to be solved is given by

min
φ

g(φ|φ(n)) (47a)

s.t. (8d), (42). (47b)

Since φHφ = M , we have φHXφ = Mλmax, which is a
constant. By removing the other constants, Problem (47) can
be rewritten as follows:

max
φ

2Re
{
φHq(n)

}
(48a)

s.t. (8d), (42), (48b)

where q(n) = (λmaxIM −Ξ)φ(n)−v∗. Due to the additional
constraint (42), the optimal solution of Problem (48) cannot
be obtained as in [24]. Furthermore, due to the non-convex
unit-modulus constraint (8d), Problem (48) is a non-convex
optimization problem. As a result, the Lagrangian dual decom-
position method developed for the convex problem (18) is not
applicable here, since the dual gap is not zero.

In the following, we propose a price mechanism for solving
Problem (48) that can obtain the globally optimal solution.
Specifically, we consider the following problem by introducing
a non-negative price p on the left hand side of constraint (42):

max
φ

2Re
{
φHq(n)

}
+ 2pRe

[
φH
(
g∗+Υφ(n)

)]
(49a)

s.t. (8d). (49b)

For a given p, the globally optimal solution is given by

φ(p) = ej arg(q(n)+p(g∗+Υφ(n))). (50)

Our objective is to find a p value for ensuring that the com-
plementary slackness condition for constraint (42) is satisfied:

p
(
J(p)− Q̂

)
= 0, (51)

where J(p) = 2Re
[
φ(p)H

(
g∗ + Υφ(n)

)]
. To solve this

equation, we consider two cases: 1) p = 0; 2) p > 0.
Case I: In this case, φ(0) = ej arg(q(n)) has to satisfy

constraint (42). Otherwise, p > 0.
Case II: Since p > 0, equation (51) holds only when

J(p) = Q̂. To solve this equation, we first provide the
following lemma.

Lemma 3: Function J(p) is a monotonically increasing
function of p.

Proof: The proof is similar to Lemma 1 and thus
omitted. �

Based on Lemma 3, the bisection search method can be
adopted for finding the solution of J(p) = Q̂. Based on
the above discussions, we provide the algorithm to solve
Problem (48) in Algorithm 3. Although Problem (48) is a
non-convex problem, in the following theorem we prove that
Algorithm 3 is capable of finding the globally optimal solution.

Theorem 2: Algorithm 3 is capable of finding the glob-
ally optimal solution of Problem (48) and thus also of
Problem (47).
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Algorithm 3 Bisection Search Method to Solve Problem (48)

1: Calculate J(0). If J(0) ≤ Q̂, terminate. Otherwise, go to
step 2.

2: Initialize the accuracy ε, bounds pl and pu;
3: Calculate p = (pl + pu)/2;
4: Update φ(p) in (50) and calculate J(p);
5: If J(p) ≥ Q̂, set pu = p; Otherwise, set pl = p;
6: If |pl − pu| ≤ ε, terminate; Otherwise, go to step 3.

Proof: Please refer to Appendix B. �
Based on the above, we now provide the details of solving

Problem (30) in Algorithm 4.

Algorithm 4 MM Combined with SCA Algorithm to Solve
Problem (30)

1: Initialize the accuracy ε, the phase shifts φ(0), the iteration
index to n = 0, the maximum number of iterations to nmax,
calculate the OF value of Problem (43) as f(φ(0));

2: Calculate Q̂(n) =
�

Q + φ(n)HΥφ(n);
3: Calculate q(n) = (λmaxIM −Ξ)φ(n) − v∗;
4: Update φ(n+1) by solving Problem (48) using Algorithm 3;
5: If n ≥ nmax or

∣∣f(φ(n+1))− f(φ(n))
∣∣/f(φ(n+1)) ≤ ε

holds, terminate; Otherwise, set n← n + 1 and go to step
2.

In the following theorem, we prove that the sequence of
{φ(n), n = 1, 2, · · · } generated by Algorithm 4 converges to
the KKT-optimal point of Problem (30).

Theorem 3: The sequences of the OF value produced by
Algorithm 4 are guaranteed to converge, and the final solution
satisfies the KKT point of Problem (30).

Proof: Please refer to Appendix C. �
Let us now analyze the complexity of Algorithm 4. The

complexity is dominated by calculating φ(n+1) in step 4 using
Algorithm 3. The complexity mainly depends on calculat-
ing the maximum eigenvalue of Ξ. Its complexity is on
the order of O(M3). The number of iterations required for
Algorithm 3 is log2

(
pu−pl

ε

)
. Then, the total complexity of

step 3 is O(log2

(
pu−pl

ε

)
M3). Hence, the total complexity of

Algorithm 4 is given by O(nmaxlog2

(
pu−pl

ε

)
M3).

D. Overall Algorithm to Solve Problem (8)

Based on the above analysis, we provide the detailed steps
of the BCD algorithm to solve Problem (8) in Algorithm 5,
where R(F(n), φ(n)) denotes the OF value of Problem (8) in
the nth iteration.

The following theorem shows the convergence and solution
properties of Algorithm 5.

Theorem 4: The OF value sequence {R(F(n), φ(n)),
n = 1, 2, · · · } generated by Algorithm 5 is guaranteed to
converge, and the final solution satisfies the KKT conditions
of Problem (8).

Proof: Please refer to Appendix D. �
The complexity of Algorithm 5 mainly depends on that

of Step 2 and Step 3, the complexity of which has been
analyzed in the above subsections. In specific, the total

Algorithm 5 Block Coordinate Descent Algorithm
1: Initialize iterative number n = 1, maximum number of

iterations nmax, feasible F(1), φ(1), error tolerance ε,
calculate R(F(1), φ(1)), calculate the optimal decoding
matrices U(1) and auxiliary matrices W(1) based on (13);

2: Given U(n), W(n) and φ(n), calculate the optimal pre-
coding matrices F(n+1) by solving Problem (15) using
Algorithm 2;

3: Given U(n), W(n) and F(n+1), calculate the optimal
φ(n+1) by solving Problem (30) using Algorithm 4;

4: Given F(n+1) and φ(n+1), calculate the optimal decoding
matrices U(n+1) in (13);

5: Given F(n+1), U(n+1) and φ(n+1), calculate the optimal
auxiliary matrices W(n+1) in (13);

6: If n ≥ nmax or
∣∣R(F(n+1), φ(n+1))−R(F(n), φ(n))

∣∣/
R(F(n+1), φ(n+1)) < ε, terminate. Otherwise, set n← n+1
and go to step 2.

complexity of step 2 and step 3 are respectively given by
O(nmax

1 log2

(
λu−λl

ε

)
KIN

3
B) and O(nmax

2 log2

(
pu−pl

ε

)
M3),

where nmax
1 and nmax

2 denote the number of iterations
for Algorithm 2 and Algorithm 4 to converge. Denote
the total number of iterations of Algorithm 5 as Nmax.
Then, the overall complexity of Algorithm 5 is given
by O

(
Nmax

(
nmax

1 log2

(
λu−λl

ε

)
KIN

3
B +nmax

2 log2

(
pu−pl

ε

)
M3
))

.
Additionally, the simulation results show that Algorithm 5
converges rapidly, which demonstrates the low complexity of
this algorithm.

IV. FEASIBILITY CHECK FOR PROBLEM (8)

Due to the conflicting EH and limited transmit power
constraints, Problem (8) may be infeasible. Hence, we have
to first check whether Problem (8) is feasible or not. To this
end, we construct the following optimization problem:

max
F,Φ

tr

(
KI∑
k=1

FH
k GFk

)
(52a)

s.t. (8b), (8d). (52b)

If the optimal OF value is larger than Q̄, Problem (8) is
feasible. Otherwise, it is infeasible. As the TPC matrices and
phase shift matrix are coupled, the globally optimal solution is
difficult to obtain. In the following, we can obtain a suboptimal
solution by alternately optimizing the TPC matrices and phase
shifts.

For a given phase shift matrix, the TPC matrix optimization
problem is given by

max
F

tr

(
KI∑
k=1

FH
k GFk

)
(53a)

s.t. (8b). (53b)

Upon denoting the maximum eigenvalue and the corre-
sponding eigenvector of G by χ and b respectively,
the optimal solution can be readily obtained as Fk =[√

pkb,0NB×(d−1)

]
, ∀k = 1, · · · , KI , where

∑KI

k=1 pk = PT

and pk ≥ 0, ∀k = 1, · · · , KI . Without loss of generality,
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Fig. 2. The simulated IRS-aided SWIPT MIMO communication scenario.

we can set pi = PT /KI , ∀i ∈ KI . The OF value is given
by χPT . In this case, the optimal TPC matrix represents the
optimal energy beamforming, which is the same as that for
the single-antenna IR case of [38].

For a given TPC matrix F, the phase shift optimization
problem is formulated as:

max
φ

φHΥφ + 2Re
{
φHg∗} (54a)

s.t. (8d), (54b)

where Υ and g are defined in the above section. The OF is
convex w.r.t. φ, and maximizing a convex function is a d.c
program. Hence, it can be solved by using the SCA method
by approximating φHΥφ as its first-order Taylor expansion,
details of which are omitted.

Finally, alternately solve Problem (53) and (54) until the
OF is larger than Q̄.

V. SIMULATION RESULTS

In this section, we provide simulation results for demonstrat-
ing the benefits of applying IRS to SWIPT systems, as seen
in Fig. 2, where there are four ERs and two IRs. The ERs and
IRs are uniformly and randomly scattered in a circle centered
at (xER, 0) and (xIR, 0) with radius 1 m and 4 m, respectively.
The IRS is located at (xIRS, 2). In the simulations, we assume
that the IRS is just above the ERs and thus we set xER = xIRS.
The large-scale path loss is modeled in dB as

PL = PL0

(
D

D0

)−α

, (55)

where PL0 is the path loss at the reference distance D0, D
is the link length in meters, and α is the path loss exponent.
Here, we set D0 = 1 and PL0 = −30dB. The path loss
exponents of the BS-IRS, IRS-ER, IRS-IR, BS-IR and BS-ER
links are respectively set as αBSIRS = 2.2, αIRSER = 2.2,
αIRSIR = 2.4, αBSIR = 3.6 and αBSER = 3.6. Unless other-
wise stated, the other parameters are set as follows: Channel
bandwidth of 1 MHz, noise power density of −160 dBm/Hz,
NB = 4, NI = NE = 2, d = 2, Q̄ = 2 × 10−4 W,
η = 0.5, M = 50, PT = 10 W , weight factors ωk = 1,
∀k ∈ KI , αl = 1, ∀l ∈ KE , xER = 5 m, and
xIR = 400 m. The following results are obtained by aver-
aging over 100 random locations and channel generations.
Due to the severe blockage and long distance, the channels
from the BS and the IRS to the IRs are assumed to be
Rayleigh fading. However, as the BS, the ERs and the IRS are
close to each other, the small-scale channels are assumed to

Fig. 3. Maximum harvested power achieved by various schemes.

be Rician fading. In particular, the small-scale channels from
the IRS to the ERs are denoted as:

G̃r,l =

√
βirser

βirser + 1
G̃LoS

r,l +
√

1
βirser + 1

G̃NLoS
r,l ,

l = 1, · · · , KE, (56)

where βirser is the Rician factor, G̃LoS
r,l is the deterministic

line of sight (LoS), and G̃NLoS
r,l is the non-LoS (NLoS)

component that is Rayleigh fading. The LoS component G̃LoS
r,l

can be modeled as G̃LoS
r,l = aNE

(
ϑAoA

irser,l

)
aH

M

(
ϑAoD

irser,l

)
,

where aNE

(
ϑAoA

irser,l

)
is defined as

aNE

(
ϑAoA

irser,l

)
=
[
1, ej 2πd

λ sin ϑAoA
irser,l , · · · , ej 2πd

λ (NE−1) sin ϑAoA
irser,l

]T
(57)

and

aM

(
ϑAoD

irser,l

)
=
[
1, ej 2πd

λ sin ϑAoD
irser,l , · · · , ej 2πd

λ (M−1) sin ϑAoD
irser,l

]T
. (58)

In (57) and (58), d is the antenna separation distance, λ is
the wavelength, ϑAoD

irser,l is the angle of departure and ϑAoA
irser,l

is the angle of arrival. It is assumed that ϑAoD
irser,l and ϑAoA

irser,l

are randomly distributed within [0, 2π]. For simplicity, we set
d/λ = 1/2. The small-scale channels from the BS to the ERs
and the IRS are similarly defined. For simplicity, the Rician
factors for all Rician fading channels are assumed to be the
same as β = 3.

We first compare the maximum power harvested by various
schemes in Fig. 3. Specifically, we solve the EH maximiza-
tion problem (52) by using the feasibility check method in
Section IV. Additionally, we also present the results without
using IRS. Fig. 3 shows the maximum EH power versus the ER
circle center location xEH. As expected, the EH power gleaned
by all schemes decreases, when the ERs are far away from the
BS. As expected, more power can be harvested with the aid
of IRS than that without IRS, especially when the number of
phase shifters M is large. This is mainly due to the fact that
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Fig. 4. Convergence behaviour of the BCD algorithm.

an additional strong link is reflected by the IRS, which can
be harvested by the ERs. This figure also shows that the IRS
is effective in expanding the operational range of ERs. For
example, when the harvested power limit is Q̄ = 2×10−4 W,
the maximum operational range of the system without IRS is
only 5.5 m, while the system having M = 40 phase shifters
can operate for distances up to 9 m.

In Fig. 4, we study the convergence behaviour of the BCD
algorithm for different numbers of phase shifters M . It is
observed from Fig. 4 that the WSR achieved for various M
values increases monotonically with the number of iterations,
which verifies Theorem 4. Additionally, the BCD algorithm
converges rapidly and in general a few iterations are sufficient
for the BCD algorithm to achieve a large portion of the
converged WSR. This reflects the low complexity of the BCD
algorithm, which is appealing for practical applications.

In the following, we compare our proposed BCD algorithms
to a pair of benchmark schemes: 1)‘No-IRS’: In this scheme,
there is no IRS to assist the transmission as in conventional
systems; 2) ‘Fixed Phase’: In this method, the phase shifts are
fixed at the solutions obtained by solving the harvested power
maximization problem (52), while they are not optimized,
when using the BCD algorithm by removing Step 3 of the
BCD algorithm. When any of the methods fails to obtain a
feasible solution, its achievable WSR is set to zero.

In Fig. 5, we first study the impact of the number of
phase shifters M on the performance of various algorithms.
As expected, the WSR achieved by all the algorithms - except
for the No-IRS method - increases with M , since a higher
degree of freedom can be exploited for optimizing the system
performance. By carefully optimizing the phase shifts for
maximizing the WSR, the BCD algorithm significantly outper-
forms the fixed-phase scheme. Additionally, the performance
gain increases with M , which emphasizes the importance of
optimizing the phase shifts. By employing the IRS in our
SWIPT system, the WSR obtained by the BCD algorithm
becomes drastically higher than that of No-IRS. For example,
when M = 60, the WSR performance gain is up to 10 bit/s/Hz.
These results demonstrate that introducing the IRS into our
SWIPT system is a promising technique of enhancing the
system performance.

Fig. 5. WSR versus the number of phase shifters.

Fig. 6. WSR versus the harvested power requirement Q̄.

In Fig. 6, the impact of harvested power requirement Q̄ is
investigated. It is seen from this figure that the WSR achieved
by all the algorithms decreases upon increasing Q̄, because the
probability of infeasibility increases, which in turn reduces the
average WSR value. We also find that the WSR obtained by the
No-IRS scheme decreases more rapidly than that of the other
two IRS-aided transmission schemes. The WSR of the No-IRS
is approaching zero when Q̄ = 4×10−4 W, while those relying
on IRSs achieve a WSR gain in excess of 20 bit/s/Hz. It is
observed again that the BCD algorithm performs better than
the fixed-phase scheme, but the gap narrows with the increase
of Q̄. This can be explained as follows. With the increase
of Q̄, both the TPC matrices and the phase shifts should be
designed for maximizing the power harvested at the ERs, and
thus the final solutions of the fixed-phase and BCD method
will become the same.

The above results are obtained for αBSIRS = 2.2,
αIRSER = 2.2, αIRSIR = 2.4 based on the assumption that
the IRS relies on an obstacle-free scenario. In practice, this
ideal scenario is seldom encountered. Hence, it is imperative to
investigate the impact of αIRS

Δ= αBSIRS = αIRSER = αIRSIR

on the system performance, which is shown in Fig. 7. Observe
from this figure that the WSR achieved by the algorithms
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Fig. 7. WSR versus the IRS-related path loss exponent αIRS.

Fig. 8. WSR versus the location of ER circle center xER.

using IRS decreases drastically with αIRS. When αIRS = 3,
the WSR-performance gain of our algorithm over the No-IRS
scenario is only 7 bit/s/Hz, because upon increasing αIRS,
the signal power reflected from the IRS becomes weaker.
Hence, the benefits of the IRS can be eroded. This provides
an important engineering design insight: the location of IRS
should be carefully considered for finding an obstacle-free
scenario associated with a low αIRS.

In Fig. 8, we study the impact of ER locations on the
system performance. As expected, the WSR achieved by all
the schemes decreases with xIRS, since the ERs become more
distant from the BS and the signals gleaned from both the BS
and IRS become weaker. The WSR achieved by the No-IRS
approaches zero when xIRS = 8 m, hence this method cannot
reach the energy transmission target of the ERs. The proposed
algorithm is again observed to significantly outperform the
other two algorithms, especially when the ERs are close to
the BS.

Finally, the impact of IR locations is investigated in Fig. 9.
It is observed that the WSR achieved by all the algorithms
decreases with xIR since the IRs become farther away from
the BS when increasing xIR. The proposed algorithm is shown
to achieve nearly the WSR gain of 10 bit/s/Hz over the

Fig. 9. WSR versus the location of IR circle center xIR.

No-IRS when xIR = 100 m, and the WSR gain slightly
increases with xIR. This means that the IRS is more advan-
tageous when the IRs are far away from the BS, and the IRS
can provide one additional favorable link.

VI. CONCLUSION

In this paper, we have invoked an IRS in a SWIPT MIMO
system for enhancing the performance of both the ERs and
IRs. By carefully adjusting the phase shifts at the IRS, the sig-
nal reflected by the IRS can be added constructively at both the
ERs and IRs. We considered the WSR maximization problem
of IRs, while guaranteeing the energy harvesting require-
ments of the ERs and the associated non-convex unit-modulus
constraints. We conceived a BCD algorithm for alternatively
optimizing the TPC matrices at the BS and the phase shift
matrix at the IRSs. For each subproblem, a low-complexity
iterative algorithm was proposed, which guarantees to be at
worst locally optimal. Our simulation results demonstrated
that the IRS enhances the performance of the SWIPT system
and that the proposed algorithm converges rapidly, hence it is
eminently suitable for practical implementations.

This paper assumes perfect CSI at the BS, which is chal-
lenging to obtain. For the future work, we will consider the
robust transmission design for the IRS-aided SWIPT system,
where the CSI is assumed to be imperfectly known. In addi-
tion, how to design the discrete phase shifts will be left for
future work.

APPENDIX A
PROOF OF LEMMA 1

We consider a pair of variables λ and λ′, where λ > λ′.
Let F(λ) and F(λ′) be the optimal solutions of Problem (20)
with λ and λ′, respectively. Since F(λ) is the optimal solution
of Problem (20) with λ, we have

L[F(λ), λ] ≤ L[F(λ′), λ]. (A.1)

Similarly, we have

L[F(λ′), λ′] ≤ L[F(λ), λ′]. (A.2)

By adding these two inequalities and simplifying them,
we have (λ− λ′)P (λ) ≤ (λ− λ′)P (λ′). Since λ > λ′,
we have P (λ) ≤ P (λ′), which completes the proof.
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APPENDIX B
PROOF OF THEOREM 2

Denote the globally optimal solution of Problem (48) by
φ�. According to [43], for a non-convex optimization problem,
all its locally optimal solutions (including the globally opti-
mal solution) should satisfy the Karush-Kuhn-Tucker (KKT)
optimality conditions, one of which is the complementary
slackness condition for constraint (42):

λ�
(
2Re

[
φ�H

(
g∗ + Υφ(n)

)]
− Q̂

)
= 0, (B.1)

where λ� is the corresponding optimal dual variable. We con-
sider two cases: 1) λ� = 0; 2) λ� > 0.

The first case means that constraint (42) is not tight in
the optimum. Then, the optimal solution can be obtained as
φ� = ej arg(q(n)), which is equal to φ(0). Hence, Algorithm 3
achieves the optimal solution of Problem (48).

For the second case, the following equality should hold:

2Re
[
φ�H

(
g∗ + Υφ(n)

)]
= Q̂. (B.2)

We prove the second case by using the method of contradic-
tion. Denote the optimal p obtained by Algorithm 3 as p�, and
the corresponding φ as φ(p�). Then, we have

2Re
[
φ(p�)H

(
g∗ + Υφ(n)

)]
= Q̂. (B.3)

Let us assume that φ(p�) is not the globally optimal solution
of Problem (48). Then, we have

2Re
{

φ(p�)Hq(n)
}

< 2Re
{

φ�Hq(n)
}

. (B.4)

Since φ(p�) is the globally optimal solution of Problem (49)
when p = p�, we have

2Re
{
φ(p�)Hq(n)

}
+2p�Re

[
φ(p�)H

(
g∗+Υφ(n)

)]
≥ 2Re

{
φ�Hq(n)

}
+2p�Re

[
φ�H

(
g∗+Υφ(n)

)]
. (B.5)

By substituting (B.2) and (B.3) into (B.5), we have

2Re
{

φ(p�)Hq(n)
}
≥ 2Re

{
φ�Hq(n)

}
, (B.6)

which contradicts (B.4). Hence, the solution obtained by
Algorithm 3 is the globally optimal solution of Problem (48).
Since Problem (47) is equivalent to Problem (48), the proof
is complete.

APPENDIX C
PROOF OF THEOREM 3

Let us define the following functions:

T (φ) Δ= φHΥφ + 2Re
{
φHg∗}+ tr

(
GbF̃

)
, (C.1)

T̄ (φ|φ(n)) Δ= −φ(n)HΥφ(n) + 2Re
[
φH
(
g∗ + Υφ(n)

)]
+tr

(
GbF̃

)
. (C.2)

It can be verified that T (φ(n)) = T̄ (φ(n)|φ(n)).
We first show that the solution sequence {φ(n),

n = 1, 2, · · · } is feasible for Problem (30). The unit-modulus
constraint is guaranteed in (50). We only have to check the
EH constraint in (8c). Note that φ(n+1) is a feasible solution

of Problem (48), and thus satisfies constraint (41). Hence,
we have T̄ (φ(n+1)|φ(n)) ≥ Q̄. By using inequality (41),
we have T (φ(n+1)) ≥ T̄ (φ(n+1)|φ(n)). Then, T (φ(n+1)) ≥
Q̄ holds, which means that the sequence of φ(n+1) satisfies
the EH constraint in (8c).

Now, we show that the OF value sequence {f(φ(n)),
n = 1, 2, · · · } is monotonically decreasing. Based on
Theorem 2, the globally optimal solution Φ to Prob-
lem (47) can be obtained. Then, we have g(φ(n+1)|φ(n)) ≤
g(φ(n)|φ(n)). According to the first condition in (44), we have
g(φ(n)|φ(n)) = f(φ(n)). Hence, we have g(φ(n+1)|φ(n)) ≤
f(φ(n)). By using the third condition of (44), we have
g(φ(n+1)|φ(n)) ≥ f(φ(n+1)). As a result, we have f(φ(n)) ≥
f(φ(n+1)). Additionally, the OF must have a lower bound due
to the unit-modulus constraint. Hence, the OF value sequence
{f(φ(n)), n = 1, 2, · · · } is guaranteed to converge.

Now, we prove that the converged solution satisfies the
KKT conditions of Problem (30). Let us denote the converged
solution by {φ�}. Since φ� is the globally optimal solution
of Problem (47), it must satisfy the KKT conditions of Prob-
lem (47). Specifically, the Lagrange function of Problem (47)
is given by

L(φ, ν, τ ) = g(φ|φ�) + ν
(
Q̂− 2Re

[
φH (g∗ + Υφ�)

])

+
M∑

m=1

τm (|φm| − 1), (C.3)

where ν and τ = {τ1, · · · , τM} are the corresponding dual
variables. Then, there must exist a ν� and τ � = {τ�

1 , · · · , τ�
M}

for ensuring that the following conditions are satisfied:

∇φ∗L(φ, ν, τ )|φ=φ�

=∇φ∗g(φ|φ�)|φ=φ�−ν� (g∗+Υφ�)

+
M∑

m=1

τ�
m(∇φ∗ |φm|) |φ=φ� = 0, (C.4)

ν�
(
Q̂−2Re

[
φ�H (g∗+Υφ�)

])
= 0, (C.5)

τ�
m (|φ�

m| − 1) = 0, ∀m. (C.6)

According to the second condition of (44), we have

∇φ∗g(φ|φ�)|φ=φ� = ∇φ∗f(φ)|φ=φ� . (C.7)

Upon denoting the OF of Problem (30) as ϕ(φ), which is the
same as f(φ) except that ϕ(φ) has more constants, we have
∇φ∗f(φ)|φ=φ� = ∇φ∗ϕ(φ)|φ=φ� . Combining with (C.7),
we have ∇φ∗g(φ|φ�)|φ=φ� = ∇φ∗ϕ(φ)|φ=φ� . By substi-
tuting it into (C.4), we arrive at

∇φ∗ϕ(φ)|φ=φ� − ν� (g∗ + Υφ�)

+
M∑

m=1

τ�
m (∇φ∗ |φm|) |φ=φ� = 0. (C.8)

It can be checked that the set of equations (C.5), (C.6) and
(C.8) constitutes exactly the KKT conditions of Problem (30).
Hence, the proof is complete.
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APPENDIX D
PROOF OF THEOREM 4

Let us define the OF of Problem (11) as

h (W,U,F,Φ) Δ=
KI∑
k=1

ωkhk (W,U,F,Φ). (D.1)

It can be readily verified that the sequence of solutions
{F(n), φ(n)} generated by Algorithm 5 is always feasible for
Problem (8). The monotonic property of Algorithm 5 can be
similarly proved by using the method of [33].

In the following, we prove that the converged solution
satisfies the KKT conditions of Problem (8). Let us denote
the converged solution as {W�,U�,F�,Φ�}.

According to Theorem 1, F� is the KKT-optimum point
of Problem (15). Upon denoting the OF of Problem (15) as
z(F,Φ�), the Lagrange function of Problem (15) is given by

L(F, λ, μ) = z(F,Φ�) + λ

(
KI∑
k=1

‖Fk‖2F − PT

)

+μ

(
Q̄− tr

(
KI∑
k=1

FH
k GFk

))
, (D.2)

where λ and μ are the corresponding dual variables. Then,
there must exist a λ� and μ� for ensuring that the following
conditions are satisfied 3:

∇F∗
k
L(F, λ, μ)

∣∣
Fk=F�

k

= ∇F∗
k
z(F,Φ�)

∣∣
Fk=F�

k

+λ�F�
k − μ�GF�

k = 0, ∀k ∈ KI , (D.3)

λ�

(
KI∑
k=1

‖F�
k‖2F − PT

)
= 0, (D.4)

μ�

(
Q̄− tr

(
KI∑
k=1

F�H
k GF�

k

))
= 0. (D.5)

Furthermore, it can be readily checked that

∇F∗
k
h (W�,U�,F,Φ�)

∣∣
Fk=F�

k

,

= ∇F∗
k
z(F,Φ�)

∣∣
Fk=F�

k

∀k ∈ KI . (D.6)

To expound a little further, we have the following chain of
inequalities:

∇F∗
k
hk (W�,U�,F,Φ�)

∣∣
Fk=F�

k

(D.7)

=−tr
(
W�

k

(
∇F∗

k
Ek (U�,F,Φ�)

∣∣
Fk=F�

k

))
(D.8)

=−tr
(
(Ek (U�,F�,Φ�))−1

(
∇F∗

k
Ek (U�,F, Φ�)

∣∣
Fk=F�

k

))
(D.9)

=
(
∇F∗

k
log
∣∣∣(Ek (U�,F,Φ�))−1

∣∣∣)∣∣∣
Fk=F�

k

(D.10)

= ∇F∗
k
Rk(F,Φ�)

∣∣
Fk=F�

k

, (D.11)

where (D.8) follows from the chain rule, and the final equality
follows from applying the Woodbury matrix identity to (14).

3For simplicity, the prime constraints are omitted.

Combining (D.11) with (D.6), we have

∇F∗
k
z(F,Φ�)

∣∣
Fk=F�

k

= ∇F∗
k
Rk(F,Φ�)

∣∣
Fk=F�

k

. (D.12)

By substituting (D.12) into (D.3), we arrive at

∇F∗
k
Rk(F,Φ�)

∣∣
Fk=F�

k

+ λ�F�
k − μ�GF�

k = 0, ∀k ∈ KI .

(D.13)

According to Theorem 3, φ� satisfies the KKT conditions
of Problem (30), and thus the set of equations (C.5), (C.6) and
(C.8) hold.

Furthermore, it can be readily verified that

∇φ∗h (W�,U�,F�,Φ) |φ=φ� = ∇φ∗ϕ(φ)|φ=φ� . (D.14)

By using similar derivations as in (D.7)-(D.11), we can prove
that

∇φ∗h (W�,U�,F�,Φ) |φ=φ� = ∇φ∗Rk(φ,F�)|φ=φ� .

(D.15)

Hence, we have

∇φ∗ϕ(φ)|φ=φ� = ∇φ∗Rk(φ,F�)|φ=φ� . (D.16)

By substituting (D.16) into (C.8), we arrive at:

∇φ∗Rk(φ,F�)|φ=φ� − ν� (g∗ + Υφ�)

+
M∑

m=1

τ�
m(∇φ∗ |φm|) |φ=φ� = 0. (D.17)

Then, the set of equations (D.13), (D.4), (D.5), (D.17),
(C.5), and (C.6) constitute exactly the KKT conditions of
Problem (8).
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